Broadband and omnidirectional light harvesting enhancement of fluorescent SiC.

نویسندگان

  • Yiyu Ou
  • Valdas Jokubavicius
  • Philip Hens
  • Michl Kaiser
  • Peter Wellmann
  • Rositza Yakimova
  • Mikael Syväjärvi
  • Haiyan Ou
چکیده

In the present work, antireflective sub-wavelength structures have been fabricated on fluorescent 6H-SiC to enhance the white light extraction efficiency by using the reactive-ion etching method. Broadband and omnidirectional antireflection characteristics show that 6H-SiC with antireflective sub-wavelength structures suppress the average surface reflection significantly from 20.5 % to 1.01 % over a wide spectral range of 390-784 nm. The luminescence intensity of the fluorescent 6H-SiC could be enhanced in the whole emission angle range. It maintains an enhancement larger than 91 % up to the incident angle of 70 degrees, while the largest enhancement of 115.4 % could be obtained at 16 degrees. The antireflective sub-wavelength structures on fluorescent 6H-SiC could also preserve the luminescence spectral profile at a large emission angle by eliminating the Fabry-Pérot microcavity interference effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband Antireflection and Light Extraction Enhancement in Fluorescent SiC with Nanodome Structures

We demonstrate a time-efficient and low-cost approach to fabricate Si3N4 coated nanodome structures in fluorescent SiC. Nanosphere lithography is used as the nanopatterning method and SiC nanodome structures with Si3N4 coating are formed via dry etching and thin film deposition process. By using this method, a significant broadband surface antireflection and a considerable omnidirectional lumin...

متن کامل

An efficient broadband and omnidirectional light-harvesting scheme employing a hierarchical structure based on a ZnO nanorod/Si3N4-coated Si microgroove on 5-inch single crystalline Si solar cells.

We employ a ZnO nanorod/Si(3)N(4)-coated Si microgroove-based hierarchical structure (HS) for a light-harvesting scheme in 5 inch single crystalline Si solar cells. ZnO nanorods and Si microgrooves were fabricated by a simple and scalable aqueous process. The excellent light-harvesting characteristics of the HS, such as broadband working ranges and omnidirectionality have been demonstrated usin...

متن کامل

Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles

GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit cu...

متن کامل

Dandelion-shaped nanostructures for enhancing omnidirectional photovoltaic performance.

Broadband and omnidirectional light harvesting is important in photovoltaic technology because of its wide spectral range of radiation and the sun's movement. This study reports the fabrication and characterization of zinc oxide (ZnO) dandelions on Cu(In,Ga)Se2 (CIGS) solar cells. The fabrication of dandelions involves the combination of self-assembled polystyrene (PS) nanospheres and the hydro...

متن کامل

Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells.

In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). Unbalanced LH at different wavelengths further reduces the achievable PCE. Here, we report a novel approach to broadband balanced LH and panchromatic solar energy conversion us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 7  شماره 

صفحات  -

تاریخ انتشار 2012